OXFORD INSTRUMENTS

Application Note

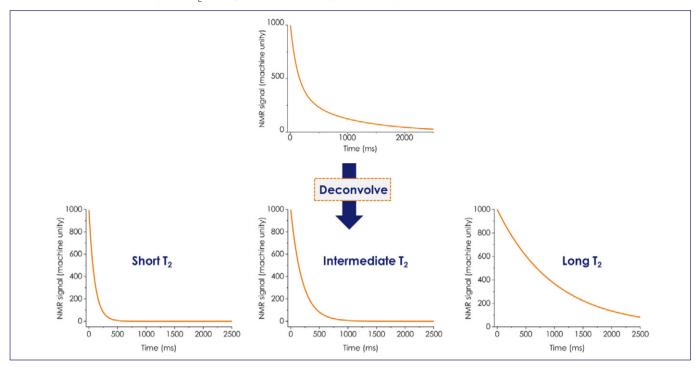
Time Domain NMR in R&D: studying the properties of plant-based meat analogue burgers during "cooking process"

Introduction

Meat analogue products based on plant protein sources have been widely considered a rich replacement for conventional meat. The main reason for the increased interest in meat analogues is public awareness of a healthier diet and, above all, a sustainable environment (less greenhouse gas emissions and depletion of natural resources). However, mimicking the sensory texture and mouthfeel attributes is still a key challenge in this topic. Therefore, adequate instrumental techniques are required to better understand and characterise plant-based meat matrices and consequently correlate them with sensory analysis.

Time Domain NMR (TD-NMR)

Time-domain NMR (TD-NMR) is a versatile technique for measuring food sample composition and, more broadly, quality control in a range of industries. It has also been successfully used to investigate water and fat distribution in animal meat products for many decades and has recently been applied to plant-based meat (PBM). ^[1,2] Furthermore, TD-NMR is a non-destructive tool and benefits from excellent repeatability, high accuracy, and reliability.


Relaxometry Analysis in Food Science

Most of the TD-NMR research on food samples is based on relaxometry methods, which are widely used to analyse the composition and distribution of water and fat. T_2 (transverse relaxation time) is the primary relaxation parameter used in food analysis. It is commonly measured using the Carr-Purcell-Meiboom-Gill (CPMG) sequence, which relies on a 90° pulse followed by a train of 180° pulses to generate a train of echoes.

The intensities of these echoes decay over time, describing the T_2 decay. The other relaxation time is the longitudinal one (T_1), which is commonly measured by the Inversion Recovery (IR) sequence and combined with CPMG in the 2D methods (IR-CPMG) to obtain the T_1 - T_2 correlation.

In food samples, the T_2 decay is generally described by multi-exponential components related to fat and water proton^{*} content. The T_2 value may range from microseconds to seconds depending on the type of fat, water content, and the environment in which the water protons are confined. In a typical food sample, the water protons correspond to more than one T_2 component, representing distinct "classes" of proton-bearing water populations, which have much faster T_2 relaxation than free water.^[3] The longest T_2 relaxation time is assigned to a fraction with the highest level of proton mobility, while the shortest one represents the water protons strongly bound to other ingredients or confined within the food matrix. Scheme 1 shows an example of T₂ decay for a multi-component sample.

Scheme 1 Multiexponential transverse relaxation (T_2) decay.

Relaxometry analysis of meat/meat analogues

TD-NMR has been widely used in the food processing industry to investigate water-protein interactions. This has provided insights into several macroscopic properties, such as water-holding capacity (WHC), which describes the capability of the protein to retain the water inside the pores, fat and water content, and textural properties changes during cooking and storage stages.^[3]

- Studies have indicated that a water proton T₂ value decreases as a function of protein concentration, indicating a lower degree of freedom and stronger interactions with other ingredients.
- It has been found that there is a correlation between the T₂ relaxation decay and WHC of different types of meat, which affects the textural properties (juiciness/ tenderness) and quality of the final product. ^[3]
- T₂ has been used to investigate the effect of the cooking process, showing that higher cooking temperature promotes the migration of bound water within the fibrous structure, as evidenced by longer T₂ relaxation decay.^[4]
- 2D TD-NMR experiments have also been useful for studying food ^[5]. For example, they can better distinguish fat and water signals in food matrices.

¹H T₂ distribution from 15 to 75 °C

This study investigated the water and fat distribution of two soya-based burgers under heating conditions (15 - 75°C) using MQC-R and a ¹H 18 mm liquid variable temperature probe. Nutrition information per 100 g of each burger is compiled in Table 1. The raw CPMG (T₂) decays were acquired on both samples and then processed using a1D inverse Laplace transformation (ILT).

Figure 1 shows samples **A** and **B**'s T_2 distribution time (1D-ILT) as the temperature increases from 15°C to 75°C. For sample **A**, containing 19% fat content, the number of components and the relative area increased by raising the temperature. In addition, the T_2 relaxation time shifts gradually to longer values at higher temperatures. Those changes may be related to structural transformation with the heating, as they are primarily caused by physico-chemical events, such as fat crystal melting (and maybe separation from water), shrinkage, and fluid expulsion.

Table 1 Nutrition information per 100g.

Samples	PBM burger A	PBM burger B
Fat (g)	19 (rapeseed and coconut oil)	6 (rapeseed, sunflower and coconut oil)
Protein (g)	17 (pea and rice)	18 (pea and wheat)
Salt (g)	0.7	1.1
Carbohydrate (g)	3.5	8.4

Sample **B**, with lower fat content (6%), shows a different T_2 distribution profile than **A**, indicating a distinct structure and water/lipid partitioning behaviours under similar heating conditions. In general, T_{22} and T_{23} in sample **B** are shorter than in **A** (Figure 2), suggesting a tighter structure and less water mobility in the protein matrix of burger **B**. This statement is supported in the following section with the 2D experiment.

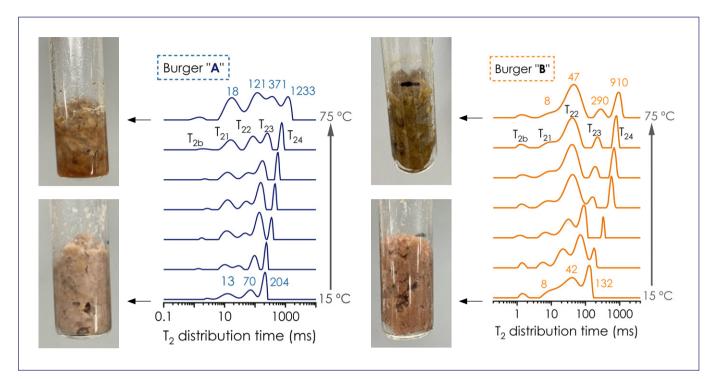


Figure 1T, distribution in PBM burgers A (left) and B (right) from 15 to 75 °C.

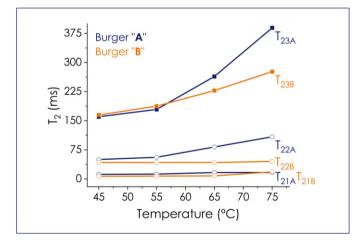


Figure $2T_2$ values over the heating process for both PBM burgers **A** (blue) and **B** (orange).

To better visualise which component may be affected by the lipids content, the CPMG (T₂) decay of coconut oil was acquired at 45°C. As shown in Figure 3, components T₂₃ and T₂₄ are more likely to represent not only water but also the lipid's protons, reinforced in the 2D maps. However, T₂₁ and T₂₂ are more closely associated with water protons. According to the literature, T_{2b} has also been assigned to the protein-bound protons ^[1,2]. Previous studies have also reported four components ^[2] for a blend of different plant proteins and five components for plant-based analogues ^[1].

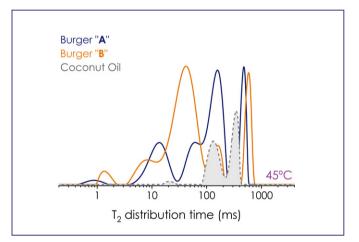
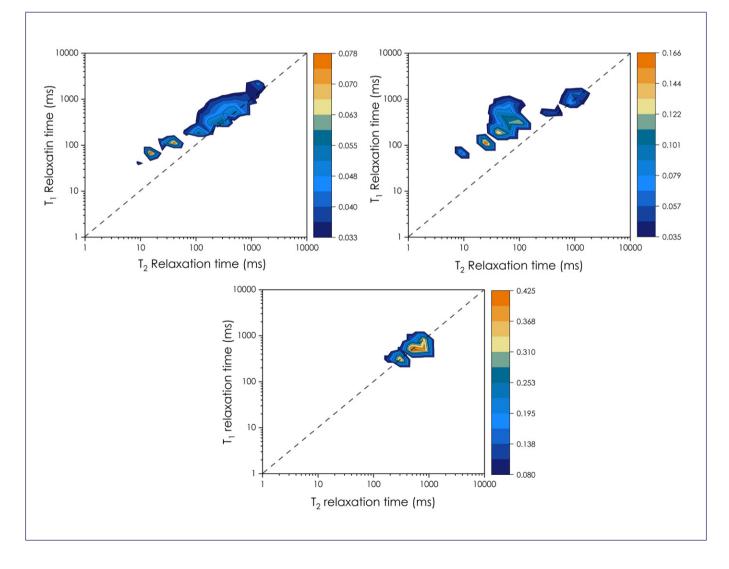


Figure 3 T₂ distribution in PBM burgers **A** (blue) and **B** (orange) and coconut oil (grey) at 45 °C.

T₁-T₂ maps from 15 to 75°C

IR-CPMG experiments were conducted and processed using the NMR ProLab software by Green Imaging, a straightforward approach to obtain the T_1 - T_2 maps using the 2D ILT processing method.


 $\rm T_1\text{-}T_2$ maps agree with the 1D-T_2 distribution but have more detailed information.

2D maps (Figure 4) show that the T_{22} component for the PBM **A** is a combination of T_2 of two components, while in the PBM **B**, the T_{22} seems to overlap three components. This shows that T_1 - T_2 maps are helpful in studying more complex systems where multiple components overlap.

The diagonal line is associated with a T_1/T_2 ratio equal to 1. As the signals go to the left of this line, the T_1/T_2 ratio becomes higher. The higher T_1/T_2 for PBM **B** at 75 °C indicates that the mobility of water protons is more restricted in PBM **B**. This suggests that water has weaker mobility in PBM **B**, i.e., its structure is more rigid, supporting the T_2 distribution data.

Figure $4T_1-T_2$ maps at 75 °C for PBM **A** (on the top left), **B** (on the top right), and coconut oil (on the bottom).

Summary

- This study demonstrates the potential of TD-NMR to explore the structural changes during simulation of the "cooking process" of plantbased meat analogue burgers, which has the potential to help improve the sensory experience of plant-based products.
- 2D correlation maps have been shown to be a powerful additional technique, particularly for R&D. MQC-R offers NMR ProLab software from Green Imaging that simplifies acquisition and processing of data from various TD-NMR 1- and 2-D experiments.
- Time domain NMR is a straightforward, nondestructive and non-invasive method that can provide insight into the structure of meat and plant-based meat analogues.
- NMR's accessibility and reproducibility make it an excellent analytical technology tool for product development and increasing customer satisfaction by simulating meat taste and flavour.
- Minimal sample preparation and no hazardous chemicals are required for TD-NMR analysis.

Visit nmr.oxinst.com

© Oxford Instruments Nanotechnology Tools Ltd trading as Oxford Instruments Magnetic Resonance, 2025. All rights reserved. Do not reproduce without permission. Part No: MR/270/0525

If you have any questions about this application note, please contact our experts: magres@oxinst.com

